

Stark 101: Part 2

Polynomial Constraints

What Do We Want to Prove?

There is a number *x* such that:

 $a_0 = 1$

 $a_1 = x$

 $a_{1022} = 2338775057$

For $\{a_n\}$ FibonacciSq: $a_{n+2} = a_{n+1}^2 + a_n^2$ mod prime, for any *n*

Constraints on $\{a_n\}$

We need:

 $a_0 = 1$

 $a_{_{1022}} = 2338775057$

 $a_{n+2} = a_{n+1}^2 + a_n^2$

If $\{a_n\}$ satisfies constraints \longrightarrow Original statement is true!

Where are We Heading?

Step I - From $\{a_n\}$ to f(x) $a_{n+2} = a_{n+1}^{2} + a_n^{2} - - - - - f(g^2 x) = f(g x)^{2} + f(x)^{2},$ for $x = g^i, 0 \le i \le 1020$

Example: for $x = g^5$:

$$f(\underline{g^2 \cdot g^5}) = f(\underline{g \cdot g^5})^2 + f(\underline{g^5})^2$$

$$g^7 \qquad g^6 \qquad g^5$$

Step I - From $\{a_n\}$ to f(x)

3 constraints on $\{a_n\} = - - - - > 3$ constraints on f(x)

$$a_0 = 1$$
 $---- > f(x) = 1$, for $x = g^0$

$$a_{1022} = 2338775057 \quad ---- f(x) = 2338775057$$
, for $x = g^{1022}$

$$a_{n+2} = a_{n+1}^{2} + a_{n}^{2}$$
 ---- $f(g^{2}x) = f(gx)^{2} + f(x)^{2}$,
for $x = g^{i}$, $0 \le i \le 1020$

Step I - From $\{a_n\}$ to f(x)

3 constraints on \{a_n\} ---> 3 constraints on f(x) $a_0 = 1$ f(x) = 1, for $x = g^0$ $a_{1022} = 2338775057$ ---> f(x) = 2338775057, for $x = g^{1022}$ $a_{n+2} = a_{n+1}^2 + a_n^2$ ---> $f(g^2x) = f(gx)^2 + f(x)^2$, for $x = g^i$, $0 \le i \le 1020$

If f(x) satisfies constraints \longrightarrow Original statement is true

z is a root of

p(x) if p(z)=0

f(x) - 1 = 0, for $x = g^0 - - - - \rightarrow \text{root: } g^0$

 $(f(x) = 1, \text{ for } x = g^0)$

f(x) - 1 = 0, for $x = g^0 - - - - \rightarrow \text{root: } g^0$

f(*x*) - 2338775057 = 0, for *x* = *g*¹⁰²² - - - - ► root: *g*¹⁰²²

f(x) - 1 = 0, for $x = g^0 - - - - \rightarrow \text{root: } g^0$

f(*x*) - 2338775057 = 0, for *x* = *g*¹⁰²² - - - - ► root: *g*¹⁰²²

f(x) - 1 = 0, for $x = g^0 - - - - \rightarrow \text{root: } g^0$

f(*x*) - 2338775057 = 0, for *x* = *g*¹⁰²² - - - → root: *g*¹⁰²²

 $f(g^2x) - f(gx)^2 - f(x)^2 = 0$, for $x = g^i$, $0 \le i \le 1020 - - - - \rightarrow \text{roots}$: $\{g^i | 0 \le i \le 1020\}$

STARKWARE STARK 101

Step III - From Roots to Rational Functions

<u>Thm</u>: *z* is a root of $p(x) \Leftrightarrow (x - z)$ divides p(x)

<u>Def</u>: (x - z) divides p(x) if p(x) / (x - z) is a polynomial

Step III - From Roots to Rational Functions

<u>Thm</u>: *z* is a root of $p(x) \Leftrightarrow (x - z)$ divides p(x)

<u>Def</u>: (x - z) divides p(x) if p(x) / (x - z) is a polynomial

$$g^{0}$$
 is a root of $f(x) - 1 - \cdots \rightarrow \frac{f(x) - 1}{x - g^{0}}$ is a polynomial
 g^{1022} is a root of $f(x) - 2338775057 - \cdots \rightarrow \frac{f(x) - 2338775057}{x - g^{1022}}$ is a polynomial

Step III - From Roots to Rational Functions

 $\{g^i \mid 0 \le i \le 1020\}$ are roots of $f(g^2x) - f(gx)^2 - f(x)^2 - - - \triangleright$

3 Rational Functions

$$p_0(x) = \frac{f(x) - 1}{x - g^0}$$

$$p_1(x) = \frac{f(x) - 2338775057}{x - g^{1022}}$$

$$p_2(x) = \frac{f(g^2x) - f(gx)^2 - f(x)^2}{(x^{1024} - 1)/[(x - g^{1021})(x - g^{1022})(x - g^{1023})]}$$

If $p_0(x)$, $p_1(x)$, $p_2(x)$ are polynomials \longrightarrow Original statement is true!

Where are We Heading?

Reduction Overview - First Constraint

3 Rational Functions

$$p_0(x) = \frac{f(x) - 1}{x - g^0}$$

$$p_1(x) = \frac{f(x) - 2338775057}{x - g^{1022}}$$

$$p_2(x) = \frac{f(g^2x) - f(gx)^2 - f(x)^2}{(x^{1024} - 1)/[(x - g^{1021})(x - g^{1022})(x - g^{1023})]}$$

If $p_0(x)$, $p_1(x)$, $p_2(x)$ are polynomials \longrightarrow Original statement is true!

Combining $p_i(x)$'s

Random linear combination:

Composition
Polynomial
$$CP = \alpha_0 \cdot p_0(x) + \alpha_1 \cdot p_1(x) + \alpha_2 \cdot p_2(x)$$

With high probability:

CP is a polynomial \Leftrightarrow all p_i 's are polynomials

Commiting on CP with Merkle Tree

What's Next?

Part 3 - how to prove that *CP* is a polynomial?

But first - coding.....

- 1) $p_0(x), p_1(x), p_2(x)$
- 2) $CP = \alpha_0 \cdot p_0(x) + \alpha_1 \cdot p_1(x) + \alpha_2 \cdot p_2(x)$
- 3) Commit on *CP*

