Stark 101: Part 2

Polynomial Constraints

What Do We Want to Prove?

There is a number x such that:
$a_{0}=1$
$a_{1}=x$
$a_{1022}=2338775057$

We will use part I:

Trace - a
Generator of $G-g$
Trace Polynomial - $f(x)$

For $\left\{a_{n}\right\}$ FibonacciSq: $a_{n+2}=a_{n+1}^{2}+a_{n}^{2}$ mod prime, for any n

Constraints on $\left\{a_{n}\right\}$

We need:

$$
\begin{aligned}
& a_{0}=1 \\
& a_{1022}=2338775057 \\
& a_{n+2}=a_{n+1}^{2}+a_{n}^{2}
\end{aligned}
$$

If $\left\{a_{n}\right\}$ satisfies constraints \longrightarrow Original statement is true!

Where are We Heading?

Constraints on $\left\{a_{n}\right\}$:
Reductions

$$
\begin{aligned}
& a_{0}=1 \\
& a_{1022}=2338775057 \\
& a_{n+2}=a_{n+1}^{2}+a_{n}^{2}
\end{aligned}
$$

Where are We Heading?

Constraints on $\left\{a_{n}\right\}$:

$$
\begin{aligned}
& a_{0}=1 \\
& a_{1022}=2338775057 \\
& a_{n+2}=a_{n+1}^{2}+a_{n}^{2}
\end{aligned}
$$

Reductions
$-ー-ー-\longrightarrow \rightarrow$ such that:
3 rational functions
$p_{0}(x), p_{1}(x), p_{2}(x)$ are polynomials

Step I - From $\left\{a_{n}\right\}$ to $f(x)$

$$
\begin{aligned}
& 3 \text { constraints on }\left\{a_{n}\right\}-----3 \text { constraints on } f(x) \\
& \begin{array}{l}
a_{0}=1 \\
a_{1022}=2338775057-----f(x)=1, \text { for } x=g^{0} \\
a_{n+2}=a_{n+1}^{2}+a_{n}^{2}
\end{array}
\end{aligned}
$$

Step I - From $\left\{a_{n}\right\}$ to $f(x)$

$$
a_{n+2}=a_{n+1}^{2}+a_{n}^{2}-----f\left(g^{2} x\right)=f(g x)^{2}+f(x)^{2},
$$

$$
\text { for } x=g^{i}, 0 \leq i \leq 1020
$$

Example: for $x=g^{5}$:

$$
f(\underbrace{g^{2} \cdot g^{5}}_{g^{7}})=f(\underbrace{g^{\cdot g^{5}}}_{g^{6}})^{2}+\underbrace{f\left(g^{5}\right)^{2}}_{g^{5}}
$$

Step I - From $\left\{a_{n}\right\}$ to $f(x)$

3 constraints on $\left\{a_{n}\right\}-----3$ constraints on $f(x)$
$a_{0}=1$

$$
----f(x)=1, \text { for } x=g^{0}
$$

$$
a_{1022}=2338775057 \cdots f(x)=2338775057, \text { for } x=g^{1022}
$$

$$
a_{n+2}=a_{n+1}^{2}+a_{n}^{2} \quad-\cdots f\left(g^{2} x\right)=f(g x)^{2}+f(x)^{2},
$$

$$
\text { for } x=g^{i}, 0 \leq i \leq 1020
$$

Step I - From $\left\{a_{n}\right\}$ to $f(x)$

$$
\begin{array}{lll}
\mathbf{3} \text { constraints on }\left\{\boldsymbol{a}_{n}\right\} & -\ldots- & \text { 3 constraints on } f(x) \\
\begin{array}{lll}
a_{0}=1 & & f(x)=1, \text { for } x=g^{0} \\
a_{1022}=2338775057 & --\infty & f(x)=2338775057, \text { for } x= \\
a_{n+2}=a_{n+1}^{2}+a_{n}^{2} & f\left(g^{2} x\right)=f(g x)^{2}+f(x)^{2}, \\
& & \text { for } x=g^{i}, 0 \leq i \leq 1020
\end{array}
\end{array}
$$

If $f(x)$ satisfies constraints \longrightarrow Original statement is true

Step II - From Constraints to Roots

$$
\begin{aligned}
& f(x)-1=0, \text { for } x=g^{0}----\operatorname{root}: g^{0} \\
& \left(f(x)=1, \text { for } x=g^{0}\right)
\end{aligned}
$$

Step II - From Constraints to Roots

$$
f(x)-1=0, \text { for } x=g^{0}---- \text { root: } g^{0}
$$

$$
f(x)-2338775057=0, \text { for } x=g^{1022} \ldots \quad \text { root: } g^{1022}
$$

Step II - From Constraints to Roots

$$
f(x)-1=0, \text { for } x=g^{0}---- \text { root: } g^{0}
$$

$$
f(x)-2338775057=0, \text { for } x=g^{1022} \ldots \quad \text { root: } \mathrm{g}^{1022}
$$

$$
f\left(g^{2} x\right)-f(g x)^{2}-f(x)^{2}=0, \text { for } x=g^{i}, 0 \leq i \leq 1020--\cdots \text { roots: }\left\{g^{i} / 0 \leq i \leq 1020\right\}
$$

Step II - From Constraints to Roots

$$
\begin{aligned}
& f(x)=1=0, \text { for } x=g^{0}-\ldots \text { root: } g^{0} \\
& f(x)-2338775057=0, \text { for } x=g^{1022}-\cdots \quad \text { root: } g^{1022} \\
& f\left(g^{2} x\right)-f(g x)^{2}-f(x)^{2}=0, \text { for } x=g^{i}, 0 \leq i \leq 1020----\operatorname{roots}:\left\{g^{i} \mid 0 \leq i \leq 1020\right\}
\end{aligned}
$$

$$
\begin{aligned}
& g^{0} \text { is a root of } f(x)-1 \\
& g^{1022} \text { is a root of } f(x)-2338775057 \\
& \left\{g^{i} / 0 \leq i \leq 1020\right\} \text { are roots of } f\left(g^{2} x\right)-f(g x)^{2}-f(x)^{2}
\end{aligned}
$$

Original

 statement istrue

Step III - From Roots to Rational Functions

Thm: z is a root of $p(x) \Leftrightarrow(x-z)$ divides $p(x)$
Def: $(x-z)$ divides $p(x)$ if $p(x) /(x-z)$ is a polynomial

$$
\begin{gathered}
\text { Polynomial } \\
\frac{x^{2}-3 x+2}{x-2}=\frac{(x-2)(x-1)}{x-2}=x-1 \\
2 \text { is a root }
\end{gathered}
$$

Not polynomial

$$
\frac{x^{2}-7 x+6}{x-2}=\frac{(x-1)(x-6)}{x-2}
$$

2 is NOT a root

Step III - From Roots to Rational Functions

Thm: z is a root of $p(x) \Leftrightarrow(x-z)$ divides $p(x)$
Def: $(x-z)$ divides $p(x)$ if $p(x) /(x-z)$ is a polynomial
g^{0} is a root of $f(x)-1 \rightarrow \frac{f(x)-1}{x-g^{0}}$ is a polynomial
g^{1022} is a root of $f(x)-2338775057 \ldots \frac{f(x)-2338775057}{x-g^{1022}}$ is a polynomial

Step III - From Roots to Rational Functions

$\left\{g^{i} \mid 0 \leq i \leq 1020\right\}$ are roots of $f\left(g^{2} x\right)-f(g x)^{2}-f(x)^{2}---$

$$
\frac{f\left(g^{2} x\right)-f(g x)^{2}-f(x)^{2}}{\prod_{i=0}^{1020}\left(x-g^{i}\right)}
$$

is a polynomial

$$
\begin{aligned}
& \prod_{i=0}^{1023}\left(x-g^{i}\right)=x^{1024}-1 \quad \text { fix: } \\
& \frac{f\left(g^{2} x\right)-f(g x)^{2}-f(x)^{2}}{\left(x^{1024}-1\right) /\left[\left(x-g^{1021}\right)\left(x-g^{1022}\right)\left(x-g^{1023}\right)\right]}
\end{aligned}
$$

3 Rational Functions

$$
\begin{aligned}
& p_{0}(x)=\frac{f(x)-1}{x-g^{0}} \\
& p_{1}(x)=\frac{f(x)-2338775057}{x-g^{1022}} \\
& p_{2}(x)=\frac{f\left(g^{2} x\right)-f(g x)^{2}-f(x)^{2}}{\left(x^{1024}-1\right) /\left[\left(x-g^{1021}\right)\left(x-g^{1022}\right)\left(x-g^{1023}\right)\right]}
\end{aligned}
$$

If $p_{0}(x), p_{1}(x), p_{2}(x)$ are polynomials \longrightarrow Original statement is true!

Where are We Heading?

Constraints on $\left\{a_{n}\right\}$:

$$
\begin{aligned}
& a_{0}=1 \\
& a_{1022}=2338775057 \\
& a_{n+2}=a_{n+1}^{2}+a_{n}^{2}
\end{aligned}
$$

Reductions
$-\quad-\quad-\quad \rightarrow$ such that:
3 rational functions
$p_{0}(x), p_{1}(x), p_{2}(x)$ are polynomials

Reduction Overview - First Constraint

Step III

Reductions

$$
\begin{aligned}
& a_{0}=1---------\frac{-}{\text { Step II }}---- \\
& f(x)=1 \\
& g^{0} \text { is a root } \\
& \text { for } x=g^{0} \\
& \text { of } f(x)-1 \\
& \text { Exists a polynomial } \\
& f(x) \text { such that: } \\
& p_{0}(x)=\frac{f(x)-1}{x-g^{0}} \\
& \text { is a polynomial }
\end{aligned}
$$

3 Rational Functions

$$
\begin{aligned}
& p_{0}(x)=\frac{f(x)-1}{x-g^{0}} \\
& p_{1}(x)=\frac{f(x)-2338775057}{x-g^{1022}} \\
& p_{2}(x)=\frac{f\left(g^{2} x\right)-f(g x)^{2}-f(x)^{2}}{\left(x^{1024}-1\right) /\left[\left(x-g^{1021}\right)\left(x-g^{1022}\right)\left(x-g^{1023}\right)\right]}
\end{aligned}
$$

If $p_{0}(x), p_{1}(x), p_{2}(x)$ are polynomials \longrightarrow Original statement is true!

Combining $\boldsymbol{p}_{i}(\boldsymbol{x})^{\prime} \mathrm{s}$

Random linear combination:

Composition
Polynomial

$$
C P=\alpha_{0} \cdot p_{0}(x)+\alpha_{1} \cdot p_{1}(x)+\alpha_{2} \cdot p_{2}(x)
$$

With high probability:

$$
C P \text { is a polynomial } \Leftrightarrow \text { all } p_{i}^{\prime} \text { 's are polynomials }
$$

Commiting on $C P$ with Merkle Tree

What's Next?

Part 3 - how to prove that $C P$ is a polynomial?

But first - coding.....

1) $p_{0}(x), p_{1}(x), p_{2}(x)$
2) $\quad C P=\alpha_{0} \cdot p_{0}(x)+\alpha_{1} \cdot p_{1}(x)+\alpha_{2} \cdot p_{2}(x)$
3) Commit on $C P$

Thank you

