

Stark 101: Part 3

FRI Commitment

Recap

Goal : prove a statement on FibonacciSq

- Trace in 1023 points
- Create *Trace* polynomial (Lagrange interpolation)
- Evaluate and commit on a larger domain



Recap

• 3 constraints on *f*(*x*):

$$f(x) - 1 = 0$$
, for $x = 1$

. . .

• 3 rational functions from the constraints:

$$p_0(x) = \frac{f(x) - 1}{x - g^0}$$

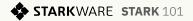
...

Recap

• **C**omposition **P**olynomial:

$$CP(x) = \alpha_0 \cdot p_0(x) + \alpha_1 \cdot p_1(x) + \alpha_2 \cdot p_2(x)$$

- Prover commits on CP
- Goal show that CP is a **polynomial**
- CP is a **polynomial** \rightarrow All constraints satisfied



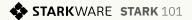
What Will We Do?

Goal:

Prove that CP is a **polynomial**

Instead:

Prove that CP is **close** to a **polynomial** of **low degree** What is close? What is low degree?

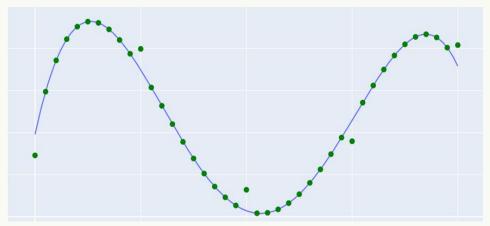


Proximity to Polynomials

Distance (def):

Distance between a function $f: D \rightarrow F$ to a polynomial p:

 $D(f,p) := # \text{ points } x \in D \text{ such that } f(x) \neq p(x)$



```
D(f, p) = 5
```


Proximity to Polynomials

Distance (def):

Distance between a function $f: D \rightarrow F$ to a polynomial p:

```
D(f,p) := # \text{ points } x \in D \text{ such that } f(x) \neq p(x)
```

Proximity

A function *f*: $D \rightarrow F$ is *close* to *a* polynomial *p* if: D(f,p) is **small**

What Will We Do? - Reminder

Goal:

Prove that CP is **close** to a **polynomial** of **low degree**

How?

<u>Fast Reed-Solomon</u> Interactive Oracle Proofs of Proximity

By Ben-Sasson, E., Bentov, I., Horesh, Y., & Riabzev, M.

https://eccc.weizmann.ac.il/report/2017/134/

FRI - Goal

Prover convinces verifier:

"The commitment is close to a low degree polynomial"

FRI - The Protocol

- Receive random β
- Apply the FRI operator
- Commit
- Lastly the prover sends the result

- FRI operator motivation
- FRI steps overview
- Deep into the FRI operator

FRI Operator

FRI Operator

Goal:

Prove that a function is close to a polynomial of a degree < **D**

Applying the FRI operator

New Goal:

Prove that a **new** function is close to a **new** polynomial Half of the domain size Degree < **D**/2

FRI Operator - Example Before applying FRI operator

• Prove:

A function is close to a polynomial of a degree < 1024

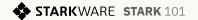
where domain size = **8192**

FRI Operator - Example Before <u>After</u> applying FRI operator

• Prove:

A function is close to a polynomial of a degree < **1024 512**

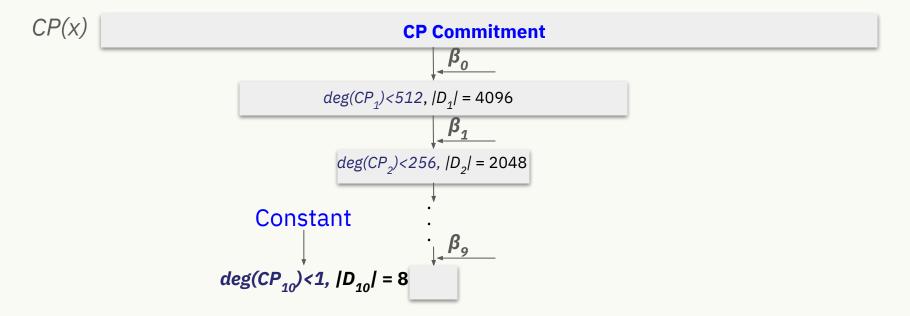
where domain size = **8192 4096**



FRI Steps Overview

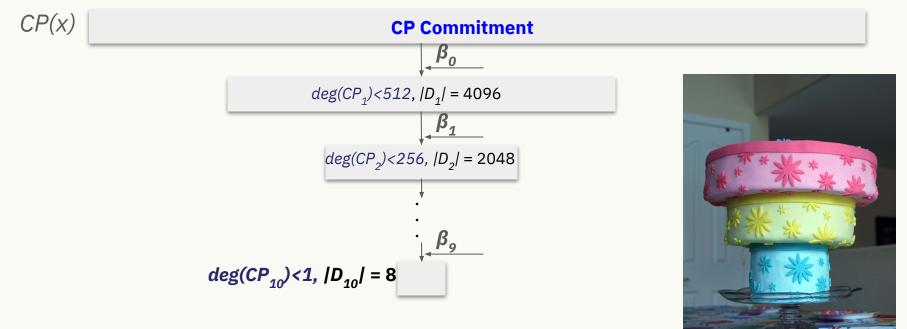
FRI Steps Overview

Showing that *deg(CP)<1024, |D|=8192*



FRI Steps Overview

Showing that *deg(CP)<1024, |D|=8192*



STARKWARE STARK 101

Deep Into the FRI Operator

• Split to even and odd powers

 $P_0(x) = g(x^2) + xh(x^2)$

• Get a random β

• Consider the new function: $P_1(y) = g(y) + \beta h(y)$ • Example: $P_0(x) = 5x^5 + 3x^4 + 7x^3 + 2x^2 + x + 3$ $g(x^2)$ $3x^4$ $2x^2$ 3 $xh(x^2)$ $5x^5$ $7x^3$ x

• Split to even and odd powers

 $P_0(x) = g(x^2) + xh(x^2)$

• Get a random β

• Consider the new function: $P_1(y) = g(y) + \beta h(y)$ • Example: $P_0(x) = 5x^5 + 3x^4 + 7x^3 + 2x^2 + x + 3$ $g(x^2)$ \downarrow g(y) $3y^2$ y y $xh(x^2)$ $5x^5$ $7x^3$ x

• Split to even and odd powers

 $P_0(x) = g(x^2) + xh(x^2)$

• Get a random β

• Consider the new function: $P_1(y) = g(y) + \beta h(y)$ • Example: $P_0(x) = 5x^5 + 3x^4 + 7x^3 + 2x^2 + x + 3$ g(y) y^2 y^2 y^2 y^3 $xh(x^2)$ $5x^5$ $7x^3$ x

• Split to even and odd powers

 $P_0(x) = g(x^2) + xh(x^2)$

• Get a random β

• Consider the new function: $P_1(y) = g(y) + \beta h(y)$

• Example: $P_{0}(x) = 5x^{5} + 3x^{4} + 7x^{3} + 2x^{2} + x + 3$ 3

STARKWARE STARK 101

• Split to even and odd powers

 $P_0(x) = g(x^2) + xh(x^2)$

• Get a random β

• Consider the new function: $P_1(y) = g(y) + \beta h(y)$ • Example: $P_0(x) = 5x^5 + 3x^4 + 7x^3 + 2x^2 + x + 3$ $3y^2$ g(y) 2y 3 $5v^2$ h(y)7v1

• Split to even and odd powers

 $P_0(x) = g(x^2) + xh(x^2)$

• Get a random β

• Consider the new function: $P_1(y) = g(y) + \beta h(y)$ Example: $P_{0}(x) = 5x^{5} + 3x^{4} + 7x^{3} + 2x^{2} + x + 3$ $3v^2$ 2y3 g(y) $5v^2$ h(y)7v1

• $P_1(y) = 3y^2 + 2y + 3 + \beta(5y^2 + 7y + 1)$ = $(3+5\beta)y^2 + (2+7\beta)y + 3 + \beta$

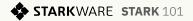
STARKWARE STARK 101

FRI - The Protocol - Reminder

- Receive random β
- Apply the FRI operator
- Commit
- Lastly the prover sends the result

constant

Do it repeatedly deg(poly) < 1 where domain size is 8



FRI - The Protocol - A Single Step

